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An appropriate mesh selection strategy is one of the fundamental tools in design-

ing robust codes for differential problems, especially if the codes are required to work

for difficult multi scale problems. Most of the existing codes base the mesh selection

on an estimate of the error (or the residual). Our strategy, based on the estimation

of two parameters characterizing the conditioning of the continuous problem, as well

as on an estimate of the error, not only permits us to obtain a well adapted, thus

reducing the cost of the code, but also provides a measure of the conditioning of

both continuous and discrete problems.
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1. Introduction

In this paper we will be concerned with the numerical solution of nonlinear
two-point boundary value problems (BVPs)

y′ = f(t, y), t0 ≤ t ≤ T, g(y(t0), y(T )) = 0,
y : [t0, T ] → Rm,

f : R×Rm → Rm, g : Rm ×Rm → Rm.

(1)

One of the most interesting aspects associated with the numerical solution of
BVPs is to find a step size variation strategy that allows the solution of difficult
∗ work supported by G.N.C.S. INdAM
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problems with the minimum effort. Usually the performance of codes for the
numerical solution of BVPs depends critically on the determination of a suitable
adapted mesh. Many attempts have been proposed, each of which has improved
single facets of the problem. For example, by improving the technique of approx-
imation of the error (or the residual) [8,9] or by adopting new mesh selection
strategies [11], or using the codes in a homotopic continuation framework [5].
Our opinion is that a substantial improvement will be made when the mesh is
chosen by considering the conditioning of the problem. We assume the principle
that both the discrete and the continuous problems should share the same order
of magnitude of the conditioning parameters. However, usually we have no infor-
mation about the conditioning of the discrete problem and its relation with the
conditioning of the continuous one.

In [2,4] two quantities measuring the conditioning of the continuous problem,
along with the corresponding ones for the discrete problem, have been defined.
They have been used to define a monitor function for the step size variation
strategy. The main objective of this paper is to investigate a modification of
the step size variation described in [4] showing that it is particularly suited for
stiff problems. We have inserted the refined strategy into a new Matlab code,
called TOM, based on a class of Boundary Value Methods [3] and on a quasi-
linearization strategy. Here we discuss only the mesh selection strategy, while the
study and the description of the nonlinear technique has been discussed in [10].

In sections 2 and 3 we recall the definitions of the conditioning of both con-
tinuous and discrete problems together with a definition of stiffness for boundary
value problems. In section 4 we describe the error estimation strategy, in section
5 the mesh selection strategy and in section 6 the technique used for the solution
of nonlinear problems. In section 7 we show the effectiveness of the mesh selection
strategy by presenting some numerical results for stiff problems. We compare the
mesh selection based on the conditioning parameter and on the error, presented
in section 5, with a mesh selection based only on the error. In order to have a
comparison with existing codes, based on standard mesh selection strategies, we
also provide the corresponding results from BVP4c [9] included in the Matlab

6.5, release 13 distribution, although we are aware, as pointed out by the authors,
that it is not especially designed for stiff problems.
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2. Conditioning of continuous problems

To define the conditioning parameter associated to the continuous problem
we consider a linear BVP of the form

y′ = L(t)y y ∈ Rm,

B0y(t0) +B1y(T ) = η.
(2)

where L(t) ∈ Rm×m. We assume that the BVP has a unique solution y(t). The
solution can be expressed in terms of the fundamental matrix Φ(t, t0) as

y(t) = Φ(t, t0)Q−1η

where Q = B0 + B1Φ(T, t0) is assumed to be nonsingular. A perturbation δη

of the boundary conditions will cause a perturbation δy of the solution which is
bounded by

‖δy(t)‖ ≤ ‖Φ(t, t0)Q−1‖‖δη‖.

If we consider the following norms in C([t0, T ])

‖δy‖∞ = max
t0≤t≤T

‖δy(t)‖

and

‖δy‖1 =
1

T − t0

∫ T

t0
‖δy(t)‖dt

we obtain the two upper bounds

‖δy‖∞ ≤ κc‖δη‖, ‖δy‖1 = γc‖δη‖

where, if φ(t) = ‖Φ(t, t0)Q−1‖,

κc = max
t0≤t≤T

φ(t), γc =
1

T − t0

∫ T

t0
φ(t)dt.

These two parameters have been used to classify the conditioning of the conti-
nuous problem [2]. There are three possibilities. If both κc and γc have moderate
sizes, then the continuous problem is well conditioned. If γc is of moderate
size but κc � γc, then the problem is defined to be stiff; this means that the
perturbation δy is large in subintervals which are small with respect to T − t0.
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The ratio σ = κc/γc measures the stiffness of the problem. Finally, if both κc

and γc are large then the problem is ill conditioned.

3. Conditioning of the discrete problem

To define the conditioning parameters for the discrete problem, we fix an
initial mesh π : t0 < t1 < · · · < tN , with hi = ti − ti−1, i = 1, . . . , N , (h =
maxi hi) on which the problem is to be approximated and we denote the vector
of the numerical approximations by y = (yT

0 , y
T
1 , · · · , yT

N )T , a block vector of size
Nm. We use as the numerical method one of the symmetric differences schemes
described in [3], even if the following considerations may apply to many other
numerical methods. Then y satisfies the following discrete problem:

My = e1 ⊗ η

where e1 = (1 0 · · · 0)T is of size N +1. The first row of the matrix M describes
the boundary conditions while the others rows depend on the numerical method
used.

Following [4], we define the block elements of the matrix G = M−1 as Gij ,
i, j = 0, . . . , N , and the matrix Ω with elements Ωij = ‖Gij‖ of size N + 1. Then
a perturbation δη of the boundary condition produces a perturbation δy in the
solution bounded by

‖δy‖ ≤ Ω∗0‖δη‖

where ‖δy‖ = (‖y0‖, ‖y1‖, · · · , ‖yN‖)T and Ω∗0 is the first column of the matrix
Ω. We can therefore use the following parameters

κd(π) = max
i

Ωi0, and γd(π) =
1

T − t0

N∑
i=1

hi max(Ω(i−1)0,Ωi0)

to define a bound for the error computed using the following two norms

e∞(π) = ‖δy‖∞ ≤ κd‖δη‖

and

e1(π) =
1

T − t0

n∑
i=1

hi max(‖δyi−1‖, ‖δyi‖) ≤ γd‖δη‖.
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Now kd(π) and γd(π) correspond to kc and γc for the discrete problem which
can be classified similarly. However, unlike the kc and γc, they depend on the
mesh π and do not necessarily share the same order of magnitude.

This suggests the following definition:

Definition 1. A mesh π of size N is said optimal WRC (with respect to condi-
tioning) if kc ' kd(π) and γc ' γd(π).

Our problem is then to find an optimal WRC mesh. In a following section
we shall refine the obtained mesh by also considering the minimization of the
global error. In this case, we shall obtain a mesh optimal WRCE (with respect
both the conditioning and the error).

4. Error estimation

The strategy to approximate the global error and the local truncation error
is similar to the one described in [3] for initial value problems.

Let

Fp(y) = 0

be the discrete problem associated to the following general non linear BVP

y′ = f(t, y)
g(y(t0), y(T )) = η

and let ŷ = (y(t0)T , y(t1)T , . . . , y(tN )T )T be the continuous solution evaluated on
the mesh. We have that

Fp(ŷ) = τp, τp = (0, τp,1, . . . , τp,N )T , τp,i = O(hp+1
i ).

The vector τ of the local truncation errors has 0 as first entry because the first
row of the discrete nonlinear problem concerns the boundary conditions, which
for simplicity are supposed to be exact. If we denote by M̂p the Jacobian matrix
of Fp computed in ŷ, we have that

Fp(ŷ)− Fp(y) = τp and ŷ − y ≈ M̂−1
p τp. (3)

Now, let us consider a method of order q > p; the exact solution satisfies

Fq(ŷ) = τq
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and

Fq(y) ≈ Fq(ŷ − M̂−1
p τp) ≈ Fq(ŷ)− M̂qM̂

−1
p τp. (4)

In [3], Theorem 10.7.1 shows that

M̂qM̂
−1
p τp = τp +O(h(p+2)). (5)

By inserting the relation (5) into (4) we obtain that −Fq(y) is an approximation
of τp of order p + 2 and we derive the following relation for the absolute global
error

ŷ − y ≈ −M−1
p Fq(y) = e

where now Mp is the Jacobian matrix evaluated at y, the numerical solution.
We accept the computed solution if the following criterion

max
0≤i≤N

(
max

1≤j≤m

|eij |
max(Abstolj , Reltol|yij |)

)
= max

0≤i≤N
ζi ≤ 1 (6)

is satisfied; Reltol and Abstolj , 1 ≤ j ≤ m denote input tolerances, and ζi is the
normalized relative error.

5. Mesh selection

As already said, our principal aim is to find an optimal WRCE mesh. Among
the two quantities, γd(π) is more suitable to be used in a step size variation
strategy since it is defined by an integral (and then its behavior is smoother
than that of κd(π)), and in fact γd(π) is used in [4] in order to find the optimal
WRC mesh. We have modified and improved this strategy by also using the
information derived from the approximation of the global error defined in the
previous section, in order to minimize the error in the numerical approximation
with a given number of steps.

We will use the following result (see [4]):

Theorem 2. The first block column of G is an approximation of Φ(t, t0)Q−1 of
order p, if p is the order of the method used.

Therefore we can consider
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γd(π) = 1
T − t0

∑N
i=1 hi max(Ωi−1,0,Ωi0) =

1
T − t0

∑N
i=1 hi max(φ(ti−1), φ(ti)) +O(hp);

this means that γd(π) is related to the quadrature formula used to approximate γc.
In order to construct an optimal WRC mesh we choose the mesh that minimizes
the error between the quadrature formula and γc, that is

Eγ =

∣∣∣∣∣ 1
T − t0

N∑
i=1

hi max(φ(ti−1), φ(ti))−
1

T − t0

∫ T

t0
φ(t)dt

∣∣∣∣∣ .
The error can be bounded by

Eγ ≤
1

T − t0

N∑
i=1

hi(hi|φ′(ξi)|+O(h2
i )),

where

ξi =

{
ti, if φ(ti) > φ(ti−1),
ti−1, otherwise.

Since we only know the discrete approximation of the function φ(t), we may
approximate the error using the following bound

Eγ ≤
1

T − t0

N∑
i=1

hi(|Ωi0 − Ωi−1,0|+O(h2
i ))

and therefore, to minimize Eγ , we solve the minimax problem

minmax
i
hi|Ωi0 − Ωi−1,0|

defining the normalized monitor function

ψγ(t) = α|Ωi0 − Ωi−1,0|, t ∈ (ti−1, ti)

where α = 1/ψmax
γ = maxi |Ωi0 − Ωi−1,0|. This problem can be solved using the

usual technique of equidistribution [1].
Starting from a mesh π0, after the equidistribution we obtain a new mesh

π1 with the same size. The equidistribution process could be repeated on π1

obtaining a new mesh π2, usually during this process we obtain γd(π0) ≤ γd(π1) ≤
γd(π2) because smaller stepsizes are used where the entries of φγ are larger, this
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means that the value of Eγ decreases and also the value of γd decreases, since the
quadrature formula approximates the integral from above.

In [4] the technique used to find the optimal mesh was to continue the
equidistribution process until the value of γd decreases. This strategy is not
efficient if we start the process with a coarse initial mesh, i.e. when the size of the
mesh is not sufficient to provide a reasonable approximation of γd. So we decide
to add and/or remove points if the new mesh πi+1 does not change enough with
respect to the mesh πi after the equidistribution process. The empirical technique
for adding or removing points is based on the following quantities associated with
the monitor function ψγ ([1] pag. 370):

r1 = max
i=1,...,N

(ψγ(ti)hi),

and

r2 =
∑

i=1,...,N

(ψγ(ti)hi)/N,

where hi refers to the equidistributed mesh. If the mesh is well distributed then
the ratio r1/r2 ≈ 1 and usually the mesh is halved. Following the strategy used
in [9], we decide to add two additional mesh points when ψγ(ti)hi is greater
than max(0.65r1, r2); we remove points, replacing two consecutive mesh intervals
by one, when ψγ(ti)hi is less than 10−3r2. The action of removing points is
more conservative since we need to not destroy the information already acquired
concerning κd and γd.

Finally, we require the mesh to be locally quasi-uniform. This property is
important since we deal with difference schemes and it is known that the stability
properties of the associated difference equations are studied for constant stepsizes
[3]. A smooth stepsize variation is then necessary to preserve the stability proper-
ties of the method. Locally quasi-uniformity is achieved by fixing two quantities
rπ and cπ and by imposing the conditions

1/rπ ≤ hi/hi−1 ≤ rπ,

1/rπ ≤ hi+1/hi ≤ rπ.
(7)

If these restrictions do not hold for a certain hi then we add a new mesh point,
halving the step; moreover we impose the condition that the stepsize must remain
constant cπ times. The sizes of rπ and cπ are chosen empirically.
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The overall process allows us to obtain a discrete problem, whose condi-
tioning parameters are almost insensitive to the addition of new points. This
means that such parameters are good approximation of the continuous ones and
an optimal WRC mesh has been found. Moreover on this mesh the discrete ap-
proximation is already a good approximation of the solution. This means that
the approximation of the global error e is reliable and we can use it in the step
size variation strategy.

Since we want to find the mesh that minimizes the error, we define the
following monitor function

ψζ(t) = max(|ζi|, |ζi−1|)1/p, t ∈ (ti−1, ti)

and the final monitor function is defined as a linear combination of ψζ and ψγ .
Numerical experiments show that the following monitor function performs well:

ψtot(t) = αγψγ(t) + ψζ(t), t ∈ (ti−1, ti)

where αγ = 0.05 maxi φζ(ti). The empirical technique for adding and removing
points and for achieving locally quasi-uniformity is the same that was used before
for ψγ , but is now associated to ψζ , using

r1 = max
i=1,N

(ψζ(ti)hi) and r2 =
∑

i=1,N

(ψζ(ti)hi)/N.

A possible strategy to reduce the overall computational cost is to combine
a lower order method with a higher order one. The lower order method is used
to compute the mesh with the same conditioning parameters of the continuous
problem, then we switch to the higher order method to reach the desired tolerance.
The decision to change order or to introduce the error in the equidistribution
strategy is taken by considering not only whether the mesh is optimal WRC but
also if the problem is stiff. If the problem is not stiff or moderately stiff, no matter
if it is well conditioned or ill conditioned, we use the higher order method.

The main computational cost in the mesh selection strategy is the computa-
tion of ψγ , which requires the solution of m linear systems, and this is expensive
for problems of large size. Shortcuts in evaluating κd and γd could be defined in
the case of large values of m, but we prefer at the present to skip this question.
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6. Nonlinear problems

The mesh selection strategy described in the previous section is based on
the conditioning parameters associated to a linear boundary value problem. To
extend this strategy to nonlinear problems we apply the Newton scheme to the
original continuous problem [10]. In this way we have to solve a sequence of linear
problems, and for each problem we calculate the conditioning parameters and we
define the monitor function for the mesh selection strategy. This is particularly
useful for stiff problems, and the numerical experiments show the efficiency of
this technique.

This strategy, called quasi-linearization [7], is usually not considered in codes
for the solution of BVPs, the most used technique being the solution of the
nonlinear discrete problems by means of a modified or a damped Newton method.
However, if the problem is very stiff, and not enough information to fix a correct
initial mesh is available, the convergence of the damped Newton scheme is not
assured, so one is obliged to halve the mesh and try again.

We note that if the grid is not changed during the iterative procedure the
two techniques generate the same sequence of discrete problems, but if the mesh
is changed the behavior is completely different.

7. Numerical experiments

The Matlab code TOM, that has been used for the numerical experiments,
solves nonlinear BVPs by using as the discrete method the Top Order Methods
[3] that are symmetric schemes described by the following formulas:

ν−1∑
i=0

αi(yn+i − yn+k−i) = hn

ν−1∑
i=0

βi(fn+i + fn+k−i),

where p = 2k, k odd, ν = (k + 1)/2.
The code uses the order 6 method together with the method of order 2 in

the same class, which corresponds to the trapezoidal rule. To estimate the error
we use methods in the ETR class [3]. For nonlinear problems a quasilinearization
procedure is used, as described in [10]. The value of rπ in (7) is set to 4 for the
order 2 method and to 3 for the order 6 method, the value of cπ is set to 5. A
problem is considered stiff if the stiffness ratio is higher than 103.
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The numerical experiments were run on a PC with an Pentium III 1.2GHz
processor and 256MBytes of RAM. The version of Matlab is 6.5, Release 13;
they try to show the effectiveness of the mesh selection strategy presented in
section 5 to solve singularly perturbed BVPs.

We have compared the mesh selection described in section 4, with a mesh
selection based only on the approximation of the error. In this latter case we do
not compute the conditioning parameter,we set the order to 6, and the monitor
function is always ψζ . All the other empirical parameters are the same. This
mesh selection is called optimal with respect to the error (TOM(WRE)).

In order to have a comparison with standard solvers we execute the nume-
rical tests also with the Matlab code BVP4c. BVP4c is a finite difference code
that implements the three-stage Lobatto IIIa formula. The mesh selection and
the error control are based on the residual of the continuous solution provided by
the collocation polynomial [9]. Is not possible to make a fair comparison because
BVP4c controls the residual and not the error; we choose this code because it is
the only code inserted in the Matlab PSE and uses a standard mesh selection
strategy.

For our numerical experiments we took the tolerances Abstolj and Reltol

equal to tol for all the components. We give the analytical Jacobians as optional
input parameters. When we know the exact solution we calculate the maximum
relative error in the numerical solution. If π : ti, 0 ≤ i ≤ N is the final mesh,
then we compute

max
0≤i≤N

( |y(ti)− yπ(ti)|
max(1, |y(ti)|)

)
,

where yπ represents the numerical solution and y is the true solution.
Problem 1

The first test problem is the linear singularly perturbed problem presented in [1].
It has been chosen because, for 0 < ε � 1, the solution has a rapid transition
layer at t = 0:

εy′′ + ty′ = 0− επ2 cos(πt)− πt sin(πt), y(−1) = −2, y(1) = 0.

The exact solution is cos(πt) + erf(t/
√

2ε)/erf(1/
√

2ε).
It has been solved for different values of the parameter ε and tol = 10−3 and

in Figure 1 we report the solution obtained with the WRCE mesh selection for
ε = 10−8. The solution is reached after 8 steps and the final mesh has 401 points.
Really different is the behavior of the code when the conditioning parameter are
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TOM(WRE) TOM(WRCE) BVP4c

ε κd γd Time Error N+1 Time Error N+1 Time Error N+1

10−1 1.8 1.4 0.06 6.1e-5 16 0.06 6.1e-5 16 0.05 2.8e-5 17

10−2 4.5 1.5 0.16 6.2e-6 61 0.16 7.9e-7 61 0.16 9.3e-6 37

10−3 13 1.5 0.33 4.0e-5 121 0.33 3.5e-7 111 0.28 1.5e-4 57

10−4 40 1.6 1.10 1.9e-7 241 0.33 7.3e-6 101 1.05 5.8e-4 95

10−5 1.3e+2 1.5 2.41 2.9e-5 441 0.66 8.3e-8 211 2.41 8.8e-5 233

10−6 4.0e+2 1.6 6.48 1.5e-5 751 1.26 1.0e-6 261 6.59 5.2e-4 530

10−7 1.3e+3 1.5 * * * 1.49 1.6e-7 291 * * *

10−8 4.0e+3 1.5 * * * 2.09 5.7e-9 401 * * *

10−9 1.3e+4 1.5 * * * 3.02 3.8e-6 371 * * *

10−10 4.0e+4 1.5 * * * 1.93 9.0e-7 361 * * *

10−11 1.3e+5 1.5 * * * 5.55 4.5e-10 761 * * *

10−12 4.0e+5 1.5 * * * 7.42 4.3e-8 731 * * *

Table 1

Conditioning parameters, execution time, error and final mesh for Problem 1

ε Mesh sequence TOM(WRE) Mesh sequence TOM(WRCE)

10−1 16 16

10−2 16,61 16,61

10−3 16,61,121 16,61,111

10−4 16,61,121,211,241 16,61,101

10−5 16,61,121,211,351,441 16,61,111,211

10−6 16,61,121,241,431,451,511,621, 16,61,111,111,191,261

731,751

10−7 16,61,121,251,451,496,601,836, 16,61,111,211,211,291

1411,2161,2171,2201 *

10−8 16,61,121,251,451,491,731,1211, 16,61,111,151,211,241,271,401

1441,2266 *

10−9 16,61,121,251,451,491,781,1151, 16,61,101,131,201,241,331,371,

1321,1356,1576,2121,2236,2486 * 371,371

10−10 16,61,121,251,451,491,771,1121, 16,61,101,141,211,251,361,361

1326,1606,1746,1836 *

10−11 16,61,121,251,451,491,771,1121, 16,61,101,141,211,251,341,351,

1326,1606,1746,1806 * 381,761

10−12 16,61,121,251,451,491,771,1121, 16,61,101,141,211,241,311,321,

1326,1606,1746,1806 * 381,381,571,731

Table 2

Mesh profile for Problem 1
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Figure 1. Solution for Problem 1

not taken in consideration. In fact for ε = 10−8 it fails to give a solution using
less than 2500 mesh points. When ε is small, TOM(WRE) requires a lot of points
in order to have some information on the solution profile. This does not happen
for TOM(WRCE): in this case the information about the behavior of the linear
operator is given by the monitor function φγ .

To show the difference we report, in Table 1 the conditioning parameters,
the behavior of the code TOM, using the two mesh selection strategies, and of
BVP4c. In Table 2 we report the mesh profile for the code TOM using the two
mesh selection strategies. The column headed ”Time” in the table report the
execution time, the column headed “N+1” report the number of mesh points in
the final mesh. The asterisk signifies that more than the maximum number of
mesh points (set to 2500) was required.

We see that the behaviors of TOM(WRE) and BVP4c are similar: both
work very well when the values of ε are higher than 10−3; for ε less than 10−6

both fail to give the solution without using more than 2500 mesh points. This is
a common behavior of solvers for which the mesh selection is based only on the
error or on the residual. Usually this problem is solved by using a continuation
strategy. TOM(WRCE) is able to compute the solution for very small values of
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the parameter ε, without using continuation. Moreover, the use of a continuation
strategy further improves the performance of TOM(WRCE).

The conditioning parameters κd and γd reported in Table 1 show that the
problem becomes stiff as ε decreases.

Problem 2
The second test problem has been chosen because it has a boundary layer of
width O(ε) at t = 0 [6]:

εy′′ + y′ = 0, y(0) = 1, y(1) = 2.

This problem has the exact solution

y(t) =
2− e−1/ε − e−t/ε

1− e−1/ε
.

The solution computed by TOM(WRCE) for ε = 10−4 is reported in Figure 2.

Figure 2. Solution for Problem 2

The comparison is reported in Tables 3 and 4: the execution times are similar
for all the solvers when ε is larger than 10−3; when the problem becomes more
difficult TOM(WRCE) is able to compute the solution, whereas TOM(WRE)
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TOM(WRE) TOM(WRCE) BVP4c

ε κd γd Time Error N+1 Time Error N+1 Time Error N+1

10−1 11 2.3 0.06 7.3e-5 16 0.06 7.3e-5 16 0.05 6.5e-5 16

10−2 1e+2 2.4 0.27 2.1e-8 86 0.11 6.4e-5 46 0.11 3.0e-5 28

10−3 1e+3 2 1.48 8.1e-5 181 0.50 7.4e-11 106 0.44 7.4e-4 74

10−4 1e+4 2.3 4.45 3.3e-5 581 0.93 3.0e-5 186 1.64 1.7e-3 135

10−5 1e+5 2 * 1.76 3.2e-10 271 6.49 0.0013 213

10−6 1e+6 2 * 2.63 3.4e-11 256 S.J.

10−7 1e+7 2 * 5.00 2.2e-11 586 S.J.

10−8 1e+8 2 * 14.45 7.8e-12 1226 S.J.

Table 3

Conditioning parameters, execution time, error and final mesh for Problem 2

ε Mesh sequence TOM(WRE) Mesh sequence TOM(WRCE)

10−1 16 16

10−2 16,61,86 16,46

10−3 16,61,101,111,131,151,171,181 16,61,91,76,106

10−4 16,61,121,206,311,446,461,561,581 16,61,116,166,186

10−5 16,61,121,241,331,371,391,416,831, 16,61,111,166,221,221,226,236,271

871,911,1376,1426,1426 *

10−6 16,61,121,221,261,511,826,836,846, 16,61,111,151,221,221,221,221,221,

1196,1216,1226,2451,2471,2496 * 231,236,246,256

10−7 16,61,121,191,351,561,611,921,1191, 16,61,111,211,301,371,541,576,576,

1221,1401,1426,1656,1656,1656 * 586,586,586

10−8 16,61,121,191,331,501,731,1066,1086, 16,61,111,191,351,581,771,1001, 1111,

1116,2231,2241,2311,2341 * 1181,1216,1216,1216,1226,1226,1226

Table 4

Mesh profile for Problem 2

and BVP4c fail. BVP4c fails because of a singular Jacobian (S.J. in the Table).
The values of κd and γd show that the problem becomes very stiff as ε decreases.

Problem 3
The third problem is a linear problem with two boundary layers [6]:

εy′′ − y = −(επ2 + 1) cos(πt) y(−1) = y(1) = 0.

The exact solution is

y(t) = cos(πt) + exp((x− 1)/
√
ε+ exp−(t+ 1)/

√
ε.
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Figure 3. Solution for Problem 3

TOM(WRE) TOM(WRCE) BVP4c

ε κd γd Time Error N+1 Time Error N+1 Time Error N+1

10−1 4.2 1.5 0.05 1.8e-3 16 0.05 1.8e-3 16 0.05 1.8e-3 16

10−2 11 1.2 0.17 9.4e-7 51 0.16 2.1e-7 61 0.11 9.7e-5 24

10−3 33 1.5 0.17 6.2e-4 61 0.17 1.7e-4 61 0.11 1.2e-4 38

10−4 1.0e+2 1.1 0.55 4.5e-9 151 0.33 4.8e-7 111 0.27 1.5e-4 55

10−5 3.2e+2 1.5 0.99 8.2e-9 231 0.33 3.6e-4 111 0.49 1.9e-4 90

10−6 1.0e+3 1 3.07 7.1e-7 361 0.71 2.2e-7 171 0.88 1.3e-3 148

10−7 3.2e+3 1 6.37 5.9e-5 1041 1.70 1.2e-9 291 3.46 1.6e-3 207

10−8 1.0e+4 1 15.81 8.1e-4 1781 2.04 9.3e-9 351 16.59 3.0e-3 347

10−9 3.2e+4 1 * * * 2.47 1.6e-7 341

10−10 1.0e+5 1 * * * 7.53 1.7e-8 921

Table 5

Conditioning parameters, execution time, error and final mesh for Problem 3

It has been solved for different values of the parameter ε and tol = 10−3 and
in Figure 3 we report the solution computed by TOM(WRCE) for ε = 10−6; the
solution is reached after 4 steps and the final mesh has 171 points.

In Table 5 we report the comparison. The conditioning parameters show
that the problem becomes stiff for ε less than 10−6 and in fact TOM(WRCE)
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ε Mesh sequence TOM(WRE) Mesh sequence TOM(WRCE)

10−1 16 16

10−2 16,51 16,61

10−3 16,61 16,61

10−4 16,61,101,151 16,61,111

10−5 16,61,121,181,231 16,61,111

10−6 16,61,121,201,221,261,301,321, 16,61,121,171

361

10−7 16,61,121,231,431,451,491,981, 16,61,131,201,196,241,291

1041

10−8 16,61,121,241,431,551,781,821, 16,61,121,121,181,201,241,281,

861,1721,1761,1781 351

10−9 16,61,121,241,431,471,551,771, 16,61,121,121,211,261,271,281,

811,871,1741,1741,1741,1741 * 341,341

10−10 16,61,121,241,431,821,901,981, 16,61,121,121,201,341,401,451,

1961,2061,2201,2291 * 471,491,601,631,821,921

Table 6

Mesh profile for Problem 3

becomes more efficient with respect to TOM(WRE) and BVP4c for values of ε
less than 10−6. In Table 6 we report the mesh sequence for TOM(WRE) and
TOM(WRCE).

Problem 4
This problem describes the fluid injection through one side of a long vertical
channel, considered in Example 1.4 of [1]: The differential equations

f ′′′ −R((f ′)2 − ff ′′] +RA = 0,
h′′ +Rfh′ + 1 = 0,
θ′′ + Pfθ′ = 0,

are to be solved subject to boundary conditions

f(0) = f ′(0) = 0, f(1) = 1, f ′(1) = 0,
h(0) = h(1) = 0,
θ(0) = 0, θ(1) = 1.

Here R and P are known constants, but A is determined by the boundary con-
ditions.

For a Reynolds number R = 100 , this problem can be solved with crude
guesses, but as R increases, it becomes much more difficult because of a boundary
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TOM(WRE) TOM(WRCE)

R κd γd Time N+1 hmin hmax Time N+1 hmin hmax

101 16 13 0.11 16 6.7e-2 6.7e-2 0.22 16 6.7e-2 6.7e-2

102 1.1e+2 17 0.39 61 1.3e-2 2.0e-2 0.33 46 6.4e-3 7.4e-2

103 1.3e+3 40 0.55 61 1.6e-2 1.8e-2 0.49 46 6.6e-3 7.3e-2

104 1.3e+4 1.0e+2 1.26 106 2.6e-3 2.2e-2 1.16 81 6.3e-4 4.9e-2

105 1.3e+5 3.1e+2 3.90 221 2.3e-4 1.5e-2 1.87 111 3.8e-4 3.7e-2

106 1.4e+6 1.0e+3 8.40 406 2.7e-4 5.2e-3 2.80 146 2.2e-4 2.0e-2

107 1.4e+7 3.1e+3 31.47 1336 7.9e-5 1.6e-3 4.72 211 4.6e-5 1.9e-2

108 1.4e+8 1.0e+4 42.08 1601 3.0e-5 2.1e-3 7.25 261 2.0e-5 7.8e-3

109 1.4e+9 3.5e+4 * * * * 33.23 871 6.3e-6 2.5e-3

Table 7

Problem 4 - TOM

layer at t = 0. We consider A as unknown, adding the equation A′ = 0. The code
TOM in combination with the optimal WRCE mesh selection is able to compute
the solution without continuation for very large values of the Reynolds number.

Figure 4. Solution for Problem 4

In Figure 4 we report the solution and the mesh profile computed by
TOM(WRCE) for R = 105. The total number of Newton iterations, which corre-
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BVP4c

R Time N+1 hmin hmax

101 0.11 16 6.7e-2 6.7e-2

102 0.27 28 1.7e-2 5.0e-2

103 0.60 35 2.8e-3 7.5e-2

104 1.32 60 9.3e-4 2.5e-2

105 – 109 S.J.

Table 8

Problem 4 - BVP4c

sponds to the number of linear BVPs that are solved, is 7, and only four different
meshes with 16,46, 76 and 111 points are used. The first Newton iteration gives
the approximated solution without changing the mesh, the second, the third and
the forth iterations require two different meshes, and the other iterations con-
verge using only one mesh. In Table 7 we report the results for the code TOM
for different values of the Reynolds number, the initial guess is always zeros and
tol = 10−3. In Table 8 we report the results for BVP4c.

Figure 5. Solution for Problem 5
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TOM(WRE) TOM(WRCE)

µ κd γd Time N+1 hmin hmax Time N+1 hmin hmax

5 32 2.5 0.22 51 1.4e-2 4.0e-2 0.22 61 1.4e-02 2.0e-2

10 7.6e+02 2.7 1.21 196 3.6e-4 1.7e-2 0.54 71 9.1e-04 5.4e-2

15 1.4e+04 2.3 3.02 256 6.4e-5 1.9e-2 1.71 166 1.6e-05 4.1e-2

20 2.2e+05 2.2 23.29 1281 5.3e-6 3.9e-3 3.02 216 1.7e-06 3.7e-2

25 3.4e+06 2.2 27.90 1306 1.8e-7 7.9e-3 3.90 191 1.9e-08 5.0e-2

30 4.9e+07 2.2 * * * * 5.11 301 2.0e-09 3.9e-2

35 7.0e+08 2.1 * * * * 8.74 456 4.9e-11 5.8e-2

40 9.7e+09 2.3 * * * * 12.96 411 2.7e-11 5.5e-2

45 1.3e+11 2.1 * * * * 18.18 456 6.6e-13 4.7e-2

50 1.8e+12 2.2 * * * * 26.04 551 8.7e-14 5.7e-2

Table 9

Problem 5 - TOM

BVP4c

µ Time N+1 hmin hmax

5 0.22 21 8.3e-3 1.1e-1

10 1.43 53 6.2e-4 3.1e-2

15 – 50 S.J.

Table 10

Problem 5 - BVP4c

Problem 5
The last nonlinear test, called Troesch’s problem, is considered a difficult one [6]:

y′′ = µ sinh(µy) y(0) = 0, y(1) = 1.

the solution has a boundary layer near x = 1, see Figure 5. We use as initial
guess 0.5 for y and zero for y′ and tol = 10−3. This problem is very difficult to
solve without a good initial guess, especially for values of the parameter µ greater
than 20. The mesh selection strategy based on the conditioning parameters, in
combination with the quasilinearization strategy allows us to obtain the solution
even with µ = 50. The conditioning parameter reported in Table 9 show that the
problem is very stiff. Also in this case the behaviors of TOM(WRE) and BVP4c
are similar for µ = 5, 10; for higher values of µ BVP4c finds a singular Jacobian
(Table 10).
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8. Conclusions

The mesh selection strategy based on the conditioning parameters, inserted
in the code TOM, result to be much more efficient with respect to standard
mesh selection strategies based on the error or on the residual, especially for
singularly perturbed BVPs. Some preliminary results show that the conditioning
parameters could be used also in combination with the residual, giving similar
improvements. We also note that, for difficult problems, it is always possible
to associate a continuation strategy, that could also take information from the
conditioning parameters.
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