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Abstract

The test set for IVP solvers presents a collection of Initial Value Problems to test solvers for
implicit di�erential equations. This test set can both decrease the e�ort for the code developer to
test his software in a reliable way, and cross the bridge between the application �eld and numerical
mathematics, by helping people working in several branches of scienti�c disciplines in choosing the
code most suitable for their problems. This document contains the descriptive part of the test set.
It describes the solvers used in the comparisons, the test problems and their origin, and reports on
the behavior of the solvers on these problems. The latest version of this document and the software
part of the test set is available via the world wide web at http://www.dm.uniba.it/�testset.
The software part serves as a platform on which one can test the performance of a solver on a
particular test problem oneself. Instructions how to use this software are in this paper as well.
The idea to develop this test set was discussed at the workshop ODE to NODE, held in Geiranger,
Norway, 19{22 June 1995 and was developed by the CWI group. After the workshop ANODE01,
held in Auckland, New Zealand, 2001, the testset moved to the University of Bari.
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I Introduction

I.1 The idea behind this test set

Both engineers and computational scientists alike will bene�t greatly from having a standard test set
for Initial Value Problems (IVPs) which includes documentation of the test problems, experimental
results from a number of proven solvers, and Fortran subroutines providing a common interface to
the de�ning problem functions. Engineers will be able to see at a glance which methods will be most
e�ective for their class of problems. Researchers will be able to compare their new methods with the
results of existing ones without incurring additional programming workload; they will have a reference
with which their colleagues are familiar. This test set tries to ful�ll these demands and tries to set a
standard for IVP solver testing. We hope that the following features of this test set will enable the
achievement of this goal:

� uniform presentation of the problems,

� ample description of the origin of the problems,

� robust interfaces between problem and drivers,

� portability among di�erent platforms,

� contributions by people from several application �elds,

� presence of real-life problems,

� being used, tested and debugged by a large, international group of researchers,

� comparisons of the performance of well-known solvers,

� interpretation of the numerical solution in terms of the application �eld,

� ease of access and use.

There exist other test sets, e.g., NSDTST and STDTST by Enright & Pryce [EP87], PADETEST
by Bellen [Bel92], the Geneva test set by Hairer & Wanner [HW] and the Test Frame for Ordinary
Di�erential Equations by Nowak and Gebauer [NG97], which all have their own qualities.

I.2 Structure of this test set

The test set consists of a descriptive part and a software part. The �rst part describes solvers and
test problems and reports on the behavior of the solvers when applied to these problems. Section II
explains how this information is presented. The software serves as a platform to test the performance
of a solver on a particular test problem by a user of the test set. In Section IV we specify the format of
the Fortran subroutines and explain how to run test problems with the help of drivers that make these
codes suitable for runs with a number of solvers. Currently, BIMD, DASSL, GAMD, MEBDFDAE,
MEBDFI, PSIDE, RADAU, RADAU5 and VODE are supported.

I.3 How to submit new test problems

We invite people to contribute new test problems to this test set. To restrict the amount of time
required for the maintainers of the test set to incorporate new problems, it is important that the
submissions are in the prescribed format. Firstly, every problem should have a description containing
the 4 sections mentioned in Section II, preferably as a LATEX-�le. Secondly, a set of Fortran subroutines
that is necessary for the implementation has to be supplied in the format speci�ed in Section IV

Submissions can be sent by e-mail to testset@dm.uniba.it
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I.4 How to obtain this test set

The latest release of this test set can be obtained via the WWW page with URL

http://www.dm.uniba.it/�testset ,

The �rst release of this test set appeared in [LSV96], the second release in [LS98], the other releases
in [MI03], [MMI06].

I.5 Acknowledgements

We gratefully acknowledge Jacek Kierzenka for his help in de�ning the interface that that allow the
use of the IVP test set problems in the MATLAB environment, the CWI group that set up the �rst
two versions of the testset: P.J. van der Houwen , W. Ho�mann, B.P. Sommeijer, W.M. Lioen, W.A.
van der Veen, J.J.B. de Swart, J.E. Frank. In particular we wish to thank P.J. van der Houwen and
Walter Lioen, who helped us during the installation procedure.

I.6 People involved

This test set is maintained by the INdAM Bari unit project group Codes and test problems for Di�er-
ential Equations (coordinator F. Mazzia). The revision 2.4 has been sponsored by the project "Metodi
numerici e software per equazioni di�erenziali ordinarie: problemi a valori iniziali ed al contorno" of
the University of Bari (2006). The revision 2.3 has been sponsored by the project PRIN 2004 "Metodi
numerici e software matematico per le applicazioni" (coordinator L. Brugnano, local coordinator F.
Mazzia) and by the project "Metodi Numerici per equazioni di�erenziali" (coordinator P. Amodio),
sponsored by the University of Bari. In January 2002 a steering committee of A. Bellen (Universit�a di
Trieste, Italy) , J. R. Cash (Imperial College, London, U.K.), E. Hairer (Universit�e de Gen�eve, Switzer-
land), F. Krogh (Math �a la Carte, Tujiunga, California, U.S.A), L. Petzold (University of California,
Snata Barbara, U.S.A), B. Simeon, G. Soderlind (Lund University,Sweden), D. Trigiante (Universit�a
di Firenze, Italy) and P.J. van der Houwen (formerly at CWI, Amsterdam, The Netherlands) has been
set up to oversee this project.
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II Format of the problem descriptions

Every problem description contains the four sections described below.

II.1 General information

The problem identi�cation is given: the type of problem (IDE, ODE or DAE), its dimension and
index. The contributor and any further relevant information are listed too. What is meant here by
IDE, ODE, DAE and index, is explained in xIV.

II.2 Mathematical description of the problem

All ingredients that are necessary for implementation are given in mathematical formulas.

II.3 Origin of the problem

A brief description of the origin of the problem, in order to give its physical interpretation. References
to the literature are given for further details.

II.4 Numerical solution of the problem

This section contains:

1. Reference solution at the end of the integration interval. The values of (some of) the
components of a reference solution at the end of the integration interval are listed.

2. Run characteristics. Integration statistics, if applicable, of runs with BIMD, DASSL, GAMD,
MEBDFDAE, MEBDFI, PSIDE, RADAU, RADAU5, and VODE serve to give insight in the
numerical di�culty of the problem.

The experiments were done on an Alphaserver DS20E, with a 667 MHz EV67 processor. We
used the Fortran 90 compiler with optimization: f90 -O5 <source code>. If a run did not
produce correct results then we report what went wrong.

The characteristics are in the following format:

� solver

The name of the numerical solver with which the run was performed.

� rtol

The user supplied relative error tolerance.

� atol

The user supplied absolute error tolerance.

� h0

The user supplied initial step size (if relevant).

� scd

The scd values denote the minimum number of signi�cant correct digits in the numerical
solution at the end of the integration interval, i.e.

scd := � log10(k relative error at the end of the integration interval k1): (.II.1)

If some components of the solution vector are not taken into account for the computation
of the scd value, or if the absolute error is computed instead of the relative error, then this
is speci�ed locally.
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� mescd

mescd := � log10(k absolute error ./ (atol./rtol + j ytrue j) k1): (.II.2)

where the absolute error is computed at the end of the integration interval, atol and rtol
are the input tolerances, ytrue is the exact solution at the end of the integration interval
and := and :� are element by element operators. In this case all the components of the
solution are taken into account.

� steps

Total number of steps taken by the solver (including rejected steps due to error test failures
and/or convergence test failures).

� accept

The number of accepted steps.

� # f and # Jac

The number of evaluations of the derivative function and its Jacobians, respectively.

� # LU

The number of LU-decompositions (not for DASSL). The codes, except for RADAU and
RADAU5, count the LU-decompositions of systems of dimension d, where d is the dimension
of the test problem.

RADAU and RADAU5 use an s-stage Radau IIA method. For RADAU5, s = 3 and for
RADAU, s = 3, 5 or 7. Every iteration of the inexact Newton process, used for solving
systems of non-linear equations, requires the solution of a linear system of dimension sd.
By means of transformations, this linear system is reduced to (s + 1)=2 linear systems of
dimension d. Of these systems, one system is real, and (s� 1)=2 systems are complex. The
decompositions of all (s+ 1)=2 linear systems are counted by RADAU and RADAU5 as 1
LU-decomposition.

� CPU

The CPU time in seconds to perform the run on the aforementioned computer. Since
timings may depend on other processes (like e.g. daemons), we perform 10 runs, discard
the maximum and minimum values and list the medium of the CPU times.

PSIDE { Parallel Software for Implicit Di�erential Equations { is a Fortran 77 code for solving
IDE problems. It is developed for parallel, shared memory computers. The integration char-
acteristics in the tables refer to a one-processor computer. Since PSIDE can do four function
evaluations and four linear system solves concurrently on a computer with four processors, one
may divide the number of function evaluations, decompositions and solves in the tables by four
to obtain the analogous e�ective characteristics for four-processor machines.

3. Behavior of the numerical solution. Plots of (some of) the solution components over (part
of) the integration interval are presented.

4. Work-precision diagrams. For every relevant solver, a range of input tolerances and, if
necessary, a range of initial stepsizes, were used to produce plots of the resulting scd or mescd
values, de�ned in Formulas (.II.1) and (.II.2), against the number of CPU seconds needed for
the run on the aforementioned computer, with the setting as described before. Here we took
again the medium of the CPU times of 10 runs, after discarding the maximum and minimum
values. The format of these diagrams is as in Hairer & Wanner [HW96, pp. 166{167, 324{325].
The range of input tolerances and initial stepsizes is problem dependent and speci�ed locally.
The input parameters for the runs in the tables with run characteristics are such that these runs
appear in the work-precision diagrams as well. The code PSIDE has been performed only on
one processor.



Format of the problem descriptions II-iii

We want to emphasize that the reader should be careful with using these diagrams

for a mutual comparison of the solvers. The diagrams just show the result of runs

with the prescribed input on the speci�ed computer. A more sophisticated setting

of the input parameters, another computer or compiler, as well as another range

of tolerances might change the diagrams considerably.
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IV The software part of the test set

IV.1 Classi�cation of test problems

We have categorized the test problems in three classes: IDEs, ODEs and DAEs.
In this test set, we call a problem an IDE (system of Implicit Di�erential Equations) if it is of the

form
f(t; y; y0) = 0; t0 � t � tend;

y; f 2 Rd;
y(t0) and y0(t0) are given.

A problem is named an ODE (system of Ordinary Di�erential Equations), if it has the form

y0 = f(t; y); t0 � t � tend;
y; f 2 Rd;
y(t0) is given,

whereas the label DAE is given to problems which can be cast in the form

My0 = f(t; y); t0 � t � tend;
y; f 2 Rd; M 2 Rd�d;
y(t0) and y0(t0) are given,

where M is a constant, possibly singular matrix. Note that ODEs and DAEs are subclasses of IDEs.

IV.2 How to perform tests

You can perform one of the following types of tests:

� solve test set problems with solvers that are supported in the test set,

� solve test set problems with your own solver,

� solve your own problem with solvers that are supported in the test set,

� solve a test set problem using the web facility,

� solve your own problem using the web facility,

� solve test set problems using a MATLAB solver,

� solve you own problem in the test set format using a MATLAB solver.

For the �rst �ve types of tests, four types of codes are involved: a solver, a driver, a problem code
and auxiliary routines, for the last two types of tests the matlab interface of the problem is generated
using two axiliary routines. The solvers available are described in xI-1-1{I-9-1. Currently, there are 9
solvers available:

1. BIMD for ODEs and DAEs of index less than or equal to 3,

2. DASSL for ODEs and IDEs/DAEs of index less than or equal to 1,

3. GAMD for ODEs and DAEs of index less than or equal to 3,

4. MEBDFDAE for ODEs and DAEs of index less than or equal to 3,

5. MEBDFI for ODEs and IDEs/DAEs of index less than or equal to 3,
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6. PSIDE for ODEs and IDEs/DAEs of index upto at least 3,

7. RADAU for ODEs and DAEs of index less than or equal to 3,

8. RADAU5 for ODEs and DAEs of index less than or equal to 3, and

9. VODE for ODEs.

These solvers can be obtained via [MM08] in the �les bimd.f, ddassl.f, gamd.f90, mebdfd.f,
mebdfi.f, pside.f, radau.f, radau5.f and vode.f. These �les contain versions of the solvers with
which the numerical experiments were conducted. The o�cial links to the solvers, which possibly
direct to more recent versions, can be found at [MM08] too.

The drivers bimdd.f, dassld.f, gamdd.f, mebdfdaed.f, mebdfid.f, psided.f, radaud.f, radau5d.f
and voded.f, which are available at [MM08], are such that runs can be performed that solve the prob-
lem numerically with the aforementioned solvers.

For every test problem, the �le problem.f contains a set of nine Fortran 77 subroutines de�ning
the problem. Although the format of the subroutines is the same for all three classes, the meaning of
the arguments may depend on the problem class. Section IV.3 describes the format of the problem
codes.

The auxiliary linear algebra routines for the solvers are in bimda.f, dassla.f, gamda.f90, psidea.f,
radaua.f (for both RADAU and RADAU5) and vodea.f. For MEBDFDAE/MEBFI, the linear al-
gebra routines are included in mebdfdae.f/mebdfi.f. The auxiliary �le report.f contains a user
interface. All these �les are available at [MM08] as well.

IV.2.1 How to solve test problems with available solvers

Compiling

f77 -o dotest solverd.f problem.f solvera.f solver.f report.f,

for the solvers written in Fortran 77, will yield an executable dotest that solves the problem, of which
the Fortran routines in the format described in Section IV.3 are in the �le problem.f. A complete
description of each solver together with some examples are reported in the SOLVERS sections xI-2-
1{I-9-1. A makefile is also available in the [MM08] to help in the compilation steps.

IV.2.2 How to solve test problems with your own solver

The following guidelines serve to test your own solver with the test set problems.

� Write your own solver in a format similar to existing solvers in the �le own.f.

� (Optional) You may like to put the linear algebra subroutines in a separate �le owna.f. In this
way you can, for example, use the linear algebra of an existing solver.

� Write driver subroutines in the �le ownd.f. If the format of your solver is similar to that of a
solver that is already available in the test set, then this will only require minor modi�cations of
the driver routines of that solver.

� Adjust the �le report.f as indicated in the comment lines of this �le. This will only be a minor
modi�cation.

� Compiling

f77 -o dotest ownd.f problem.f own.f owna.f report.f,

will yield an executable dotest that solves the problem, of which the Fortran routines are in
the �le problem.f
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IV.2.3 How to solve your own problem with available solvers

The following guidelines serve to solve your own problem with the solvers that are supported in the
test set.

� Write your own problem in a format similar to that of the test set problems in the �le newprob.f.
This format is described precisely in Section IV.3.

� Adjust the �le report.f as indicated in the comment lines of this �le. This will only be a minor
modi�cation.

� To solve your problem with, for example, DASSL, compiling

f77 -o dotest dassld.f newprob.f ddassl.f dassla.f report.f,

will give you the desired executable dotest.

IV.2.4 How to solve a test set problem using the web facility

In [MM08], following the link \compile and run on line" it is possible to solve a test set problem on-
line, using the supported solvers. The user input are the relative tolerance rtol, the absolute tolerance
atol and the initial stepsize h0 for the solvers that need it. As a results the solution computed in the
last point, the scd and mescd and some integration characteristics, as described in xII.4, are displayed.
The plots of some component of the solution are also visualized.

IV.2.5 How to solve your own problem using the web facility

In [MM08], following the link \compile and run on line" it is possible to upload a �le containing the
subroutines describing the problem written using the format described precisely in xIV.3. Then it is
possible to choose one of the supported solver for the solution of the problem. The user input are the
relative tolerance rtol, the absolute tolerance atol and the initial stepsize h0 for the solvers that need
it. As a results the solution computed in the last point, the scd and mescd if the reference solution is
available and some integration characteristics, as described in xII.4, are displayed. The plots of the
components of the solution de�ned in the subroutine setoutput are also visualized.

IV.2.6 How to solve test set problems using a MATLAB solver

The MATLAB [Mat] function minterface.m together with the fortran function matlab_interface.F,
allow to construct the mex �les to run problems in the MATLAB environment. The only restriction is
that you need to put the problems and the auxiliary routines in the correct directory. We suggest to
download the complete distribution tree of the IVP test set in [MM08] if you want to use the matlab
interface.

The MATLAB instruction:

MPROB = minterface(problem)

returns a function handle to a MEX-Function interface to problem problem. If needed, the Fortran
MEX-Function interface is automatically generated and compiled, you need a Fortran compiler com-
patible with the MATLAB environment to complete the compilation steps. Moreover, before using,
for the �rst time, this utilities, at the MATLAB prompt type

mex -setup

and select the Fortran compiler you want to use.
The interface mprob supports the following calling sequences:
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PROB = MPROB('Prob')

[Y0,YP0,CONSIST] = MPROB('Init',NEQ,T0)

[ATOL,RTOL] = MPROB('Tolerances',NEQN,ATOL,RTOL)

[F,IERR,RPAR,IPAR] = MPROB('Feval',NEQ,T,Y,YP,RPAR,IPAR)

[J,IERR,RPAR,IPAR] = MPROB('Jeval',LDIM,NEQ,T,Y,YP,RPAR,IPAR)

[M,IERR,RPAR,IPAR] = MPROB('Meval',LDIM,NEQ,T,Y,YP,RPAR,IPAR)

Y = MPROB('Solut',NEQ,TFINAL)

[MESCD,SCD] = MPROB('Report',NEQ,YREF,Y,PROBNM,TOLVEC,ATOL,RTOL)

MPROB('Help')

The input parameters are the same de�ned in IV.3 for the fortran functions de�ning the problem.
The function odetest.m contains a user interface to run and compile the problems in the MATLAB

environment. As an example the instruction:

>> [sol,stats] = odetest(problem,'ode15s',1e-5,1e-4,1)

solves the problem using the matlab solver 'ode15s', with absolute tolerance equal to 1e-5, relative
tolerance equal to 1e-4, the �rst component of the solution is plotted using the MATLAB function
'odeplot'. The output variable sol contains information about the solution.

Use the MATLAB help to have information about the input/output parameters of the functions.

IV.2.7 How to solve you own problem in the test set format using a MATLAB solver

Write your own problem in a format similar to that of the test set problems, as described in Section IV.3
in the �le newprob.f. Then put the �le in the correct directory in the testset distribution. The
instruction:

MPROB = minterface(newprob)

returns a function handle to a MEX-Function interface to problem newprob.
The instruction odetest

>> [sol,stats] = odetest(newprob,'ode15s',1e-5,1e-4,1)

will automatically generate the function handle and solve the problem with the MATLAB solver
ode15s.

IV.3 Format of the problem codes

The eight subroutines that de�ne the problem are called PROB, INIT, SETTOLERANCES, SETOUTPUT,
FEVAL, JEVAL, MEVAL, and SOLUT. The following subsections describe the format of these subroutines
in full detail. An additional function PIDATE allows to check the problem interface date, for the current
release this function should be equal to:

integer function pidate()

pidate = 20060828

return

end

In the sequel, the variables listed under INTENT(IN), INTENT(INOUT), and INTENT(OUT) are input,
update and output variables, respectively.
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IV.3.1 Subroutine PROB

This routine gives some general information about the test problem.

SUBROUTINE PROB(FULLNM,PROBLM,TYPE,

+ NEQN,NDISC,T,

+ NUMJAC,MLJAC,MUJAC,

+ NUMMAS,MLMAS,MUMAS,

+ IND)

CHARACTER*(*) FULLNM, PROBLM, TYPE

INTEGER NEQN,NDISC,MLJAC,MUJAC,MLMAS,MUMAS,IND(*)

DOUBLE PRECISION T(0:*)

LOGICAL NUMJAC, NUMMAS

C INTENT(OUT) FULLNM,PROBLM,TYPE,NEQN,NDISC,T,NUMJAC,MLJAC,

C + MUJAC,NUMMAS,MLMAS,MUMAS,IND

Meaning of the arguments:

FULLNM

This character string contains the long name of the problem, e.g. Chemical Akzo Nobel problem.

PROBLM

This character string contains the short name of the problem, e.g. chemakzo, and corresponds
to the name of the Fortran source �le.

TYPE

This character string takes the value IDE, ODE or DAE, depending on the type of problem.

NEQN

The dimension d of the problem, which is the number of equations to be solved.

NDISC

The number of discontinuities in time of the function f or its derivative. The solver is restarted
at every such discontinuity by the driver.

T

An array containing time points.

{ If NDISC .EQ. 0, then T(0) contains t0 and T(1) contains tend.

{ If NDISC .GT. 0, then T(0) contains t0, T(NDISC+1) contains tend and T(1) . . . T(NDISC)
are the time points where the function f or its derivative has a discontinuity in time.

NUMJAC

To solve the problem numerically, it is necessary to use the partial derivative J := @f=@y. If
J is available analytically, then NUMJAC = .FALSE. and J is provided via subroutine JEVAL. If
J is not available, then NUMJAC = .TRUE. and JEVAL is a dummy subroutine. In this case, the
solvers approximate J by numerical di�erencing.

MLJAC and MUJAC

These integers contain information about the structure of J := @f=@y. If J is a full matrix, then
MLJAC = NEQN, otherwise MLJAC and MUJAC equal the number of nonzero lower co-diagonals and
the number of nonzero upper co-diagonals of J , respectively.

NUMMAS

Only relevant for IDEs.
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{ For IDEs, it is necessary to use the partial derivative M := @f=@y0. If M is available
analytically, then NUMMAS = .FALSE. and M is provided via subroutine MEVAL. If M is
not available, then NUMMAS = .TRUE. and MEVAL is a dummy subroutine. In this case, the
solvers have to approximate M by numerical di�erencing.

{ For DAEs and ODEs, NUMMAS is not referenced.

MLMAS and MUMAS

These integers contain information about the structure of the constant matrix M (for DAEs) or
the matrix M := @f=@y0 (for IDEs).

{ For IDEs and DAEs: If M is a full matrix, then MLMAS = NEQN, otherwise MLMAS and
MUMAS equal the number of nonzero lower co-diagonals and the number of nonzero upper
co-diagonals of M , respectively.

{ For ODEs, MLMAS and MUMAS are not referenced.

IND

Connected to IDEs and DAEs is the concept of index.

{ For ODEs, IND is not referenced.

{ For IDEs and DAEs, IND is an array of length NEQN and IND(I) speci�es the index of
variable I.

IV.3.2 Subroutine INIT

This routine contains the initial values y(t0) and y0(t0).

SUBROUTINE INIT(NEQN,T,Y,YPRIME,CONSIS)

INTEGER NEQN

DOUBLE PRECISION T,Y(NEQN),YPRIME(NEQN)

LOGICAL CONSIS

C INTENT(IN) NEQN,T

C INTENT(OUT) Y,YPRIME,CONSIS

Meaning of the arguments:

NEQN

The dimension of the problem.

Y(NEQN)

Contains the initial value y(t0).

YPRIME(NEQN)

Only relevant for IDEs and DAEs.

{ For IDEs and DAEs, YPRIME contains the initial value y0(t0).

{ For ODEs, YPRIME is not set. If needed by the solver, it is computed in the driver as
y0(t0) = f(t0; y0).

CONSIS

Only relevant for IDEs and DAEs.
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{ For IDEs and DAEs, CONSIS is a switch for the consistency of the initial values. If
CONSIS .EQ. .TRUE., then y(t0) and y0(t0) are assumed to be consistent. If CONSIS .EQ.

.FALSE., then y(t0) and y0(t0) are possibly inconsistent. Solvers with a facility to compute
consistent initial values internally, will try to do so in this case. Currently, all problems in
the test set have consistent initial values.

{ For ODEs, CONSIS is not referenced.

IV.3.3 Subroutine SETTOLERANCES

This routine de�nes the input tolerances RTOL and ATOL.

SUBROUTINE SETTOLERANCES(NEQN,RTOL,ATOL,TOLVEC)

INTEGER NEQN

LOGICAL TOLVEC

DOUBLE PRECISION RTOL(NEQN), ATOL(NEQN)

C INTENT(IN) NEQN

C INTENT(INOUT) RTOL, ATOL

C INTENT(OUT) TOLVEC

Meaning of the arguments:

NEQN

The dimension of the problem.

RTOL

Contains the relative tolerances.

{ In input contains the value RTOL(1).

{ In output could contain a vector valued RTOL, with di�erent values for the relative tolerances
in each component.

ATOL

Contains the absolute tolerances.

{ In input contains the value ATOL(1).

{ In output could contain a vector valued ATOL, with di�erent values for the absolute toler-
ances in each component.

TOLVEC

Logical output variable.

{ TOLVEC = .TRUE. if all the component of RTOL and ATOL are initialized.

{ TOLVEC = .FALSE. if only the �rst component of RTOL and ATOL is initialized.

IV.3.4 Subroutine SETOUTPUT

This routine contains information about the required output.

SUBROUTINE SETOUTPUT(NEQN,SOLREF,PRINTSOLOUT,

+ NINDSOL,INDSOL)

LOGICAL SOLREF, PRINTSOLOUT

INTEGER NEQN, NINDSOL
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INTEGER INDSOL(NEQN)

C INTENT(IN) NEQN

C INTENT(OUT) NINDSOL, INDSOL(NEQN), PRINTSOLOUT, SOLREF

Meaning of the arguments:

NEQN

The dimension of the problem.

SOLREF

Contains information about the reference solution.

{ SOLREF = .TRUE. means that the reference solution is available in the function solut.

{ SOLREF = .FALSE.means that the reference solution is not available, the subroutine SOLOUT
must be a dummy subroutine.

PRINTSOLOUT

Contains information about the required output.

{ PRINTSOLOUT=.TRUE. means that some components of the intermediate computed values
of the solution are printed in the output �le called problemSOLVER.txt.

{ This option is not activated for the code pside. Moreover a MATLAB �le called prob-
lemSOLVER.m and a SCILAB �le called problemSOLVER.sci are generated as utilities to
generate the plots of the printed components of the solution.

{ PRINTSOLOUT=.FALSE. means that no intermediate values are printed.

NINDSOL

If PRINTSOLOUT=.TRUE., NINDSOL contains the number of components to be printed.

INDSOL

If PRINTSOLOUT=.TRUE., INDSOL(1:NINDSOL) contains the index of the NINDSOL components to
be printed.

IV.3.5 Subroutine FEVAL

This subroutine evaluates the function f .

SUBROUTINE FEVAL(NEQN,T,Y,YPRIME,F,IERR,RPAR,IPAR)

INTEGER NEQN,IERR,IPAR(*)

DOUBLE PRECISION T,Y(NEQN),YPRIME(NEQN),F(NEQN),RPAR(*)

C INTENT(IN) NEQN,T,Y,YPRIME

C INTENT(INOUT) RPAR,IPAR

C INTENT(OUT) F,IERR

Meaning of the arguments:

NEQN

The dimension of the problem.

T

The time point where the function is evaluated.

Y(NEQN)

The value of y in which the function is evaluated.
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YPRIME(NEQN)

Only relevant for IDEs.

{ For IDEs, this is the value of y0 in which the function f is evaluated.

{ For ODEs and DAEs, YPRIME is not referenced.

F(NEQN)

The resulting function value f(T; Y) (for ODEs and DAEs), or f(T; Y; YPRIME) (for IDEs).

IERR

IERR is an integer 
ag which is always equal to zero on input. Subroutine FEVAL sets IERR = -1

if FEVAL can not be evaluated for the current values of T, Y and YPRIME. Some solvers have the
facility to attempt to prevent the occurrence of IERR = -1, or return to the driver in that case.

IERR has an analogous meaning in subroutines JEVAL and MEVAL.

RPAR and IPAR

RPAR and IPAR are double precision and integer arrays, respectively, which can be used for
communication between the driver and the subroutines FEVAL, JEVAL and MEVAL. If RPAR and
IPAR are not needed, then these parameters are ignored by treating them as dummy arguments.

RPAR and IPAR have the same meaning in subroutines JEVAL and MEVAL.

IV.3.6 Subroutine JEVAL

This subroutine evaluates the derivative (or Jacobian) of the function f with respect to y.

SUBROUTINE JEVAL(LDIM,NEQN,T,Y,YPRIME,DFDY,IERR,RPAR,IPAR)

INTEGER LDIM,NEQN,IERR,IPAR(*)

DOUBLE PRECISION T,Y(NEQN),YPRIME(NEQN),DFDY(LDIM,NEQN),RPAR(*)

C INTENT(IN) LDIM,NEQN,T,Y,YPRIME

C INTENT(INOUT) RPAR,IPAR

C INTENT(OUT) DFDY,IERR

Meaning of the arguments:

LDIM

The leading dimension of the array DFDY.

NEQN

The dimension of the problem.

T

The time point where the derivative is evaluated.

Y(NEQN)

The value of y in which the derivative is evaluated.

YPRIME(NEQN)

Only relevant for IDEs.

{ For IDEs, this is the value of y0 in which the derivative @f(t; y; y0)=@y is evaluated.

{ For ODEs and DAEs, YPRIME is not referenced.

DFDY(LDIM,NEQN)

The array with the resulting Jacobian matrix.
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{ If @f=@y is a full matrix (MLJAC = NEQN), then DFDY(I,J) contains @fI=@yJ.

{ If @f=@y is a band matrix (0 � MLJAC < NEQN), then DFDY(I-J+MUJAC+1,J) contains
@fI=@yJ (LAPACK / LINPACK / BLAS storage).

IERR, RPAR and IPAR

See the description of subroutine FEVAL.

IV.3.7 Subroutine MEVAL

For ODEs, MEVAL is not called and a dummy subroutine is supplied. For DAEs, it supplies the constant
matrix M . For IDEs, it evaluates the matrix M := @f=@y0.

SUBROUTINE MEVAL(LDIM,NEQN,T,Y,YPRIME,DFDDY,IERR,RPAR,IPAR)

INTEGER LDIM,NEQN,IERR,IPAR(*)

DOUBLE PRECISION T,Y(NEQN),YPRIME(NEQN),DFDDY(LDIM,NEQN),RPAR(*)

C INTENT(IN) LDIM,NEQN,T,Y,YPRIME

C INTENT(INOUT) RPAR,IPAR

C INTENT(OUT) DFDDY,IERR

Meaning of the arguments:

LDIM

The leading dimension of the matrix M .

NEQN

The dimension of the problem.

T

The time point where M is evaluated. (For DAEs, T is not referenced.)

Y(NEQN)

The value of y in which M is evaluated. (For DAEs, Y is not referenced.)

YPRIME(NEQN)

The value of y0 in which M is evaluated. (For DAEs, YPRIME is not referenced.)

DFDDY(LDIM,NEQN)

This array contains the constant matrix M (for DAEs) or M := @f=@y0 (for IDEs).

{ IfM is a full matrix (MLMAS = NEQN), then DFDDY(I,J) containsMI;J for DAEs and @fI=@y
0

J

for IDEs.

{ If M is a band matrix (0 � MLMAS < NEQN), then DFDDY(I-J+MUMAS+1,J) contains MI;J for
DAEs and @fI=@y

0

J
for IDEs. (LAPACK / LINPACK / BLAS storage).

IERR, RPAR and IPAR

See the description of subroutine FEVAL.

IV.3.8 Subroutine SOLUT

This routine contains the reference solution.

SUBROUTINE SOLUT(NEQN,T,Y)

INTEGER NEQN

DOUBLE PRECISION T,Y(NEQN)

C INTENT(IN) NEQN,T

C INTENT(OUT) Y
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Meaning of the arguments:

NEQN

The dimension of the problem.

T

The value of t, in which the reference solution is given (normally tend).

Y(NEQN)

This array contains the reference solution in t = T.

IV.4 Format of the solver codes

The following guidelines serve to write a solver that could be easily inserted in the test set.

� Write your own solver in a format similar to existing solvers in the �le own.f.

� Put the linear algebra subroutines in a separate �le owna.f.

� Write driver subroutines in the �le ownd.f. If the format of your solver is similar to that of a
solver that is already available in the test set, then this will only require minor modi�cations of
the driver routines of that solver.

� Adjust the �le report.f as indicated in the comment lines of this �le. This will only be a minor
modi�cation.
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